Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.106
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38621765

RESUMO

Objectives: The coronavirus disease 2019 (COVID-19) pandemic continues to pose significant challenges to the public health sector, including that of the United Arab Emirates (UAE). The objective of this study was to assess the efficiency and accuracy of various deep-learning models in forecasting COVID-19 cases within the UAE, thereby aiding the nation's public health authorities in informed decision-making. Methods: This study utilized a comprehensive dataset encompassing confirmed COVID-19 cases, demographic statistics, and socioeconomic indicators. Several advanced deep learning models, including long short-term memory (LSTM), bidirectional LSTM, convolutional neural network (CNN), CNN-LSTM, multilayer perceptron, and recurrent neural network (RNN) models, were trained and evaluated. Bayesian optimization was also implemented to fine-tune these models. Results: The evaluation framework revealed that each model exhibited different levels of predictive accuracy and precision. Specifically, the RNN model outperformed the other architectures even without optimization. Comprehensive predictive and perspective analytics were conducted to scrutinize the COVID-19 dataset. Conclusion: This study transcends academic boundaries by offering critical insights that enable public health authorities in the UAE to deploy targeted data-driven interventions. The RNN model, which was identified as the most reliable and accurate for this specific context, can significantly influence public health decisions. Moreover, the broader implications of this research validate the capability of deep learning techniques in handling complex datasets, thus offering the transformative potential for predictive accuracy in the public health and healthcare sectors.

2.
Vox Sang ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622931

RESUMO

BACKGROUND AND OBJECTIVES: Accurate HIV incidence estimates among blood donors are necessary to assess the effectiveness of programs aimed at limiting transfusion-transmitted HIV. We assessed the impact of undisclosed HIV status and antiretroviral (ARV) use on HIV recency and incidence estimates using increasingly comprehensive recent infection testing algorithms. MATERIALS AND METHODS: Using 2017 donation data from first-time and lapsed donors, we populated four HIV recency algorithms: (1) serology and limiting-antigen avidity testing, (2) with individual donation nucleic amplification testing (ID-NAT) added to Algorithm 1, (3) with viral load added to Algorithm 2 and (4) with ARV testing added to Algorithm 3. Algorithm-specific mean durations of recent infection (MDRI) and false recency rates (FRR) were calculated and used to derive and compare incidence estimates. RESULTS: Compared with Algorithm 4, progressive algorithms misclassified fewer donors as recent: Algorithm 1: 61 (12.1%); Algorithm 2: 14 (2.8%) and Algorithm 3: 3 (0.6%). Algorithm-specific MDRI and FRR values resulted in marginally lower incidence estimates: Algorithm 1: 0.19% per annum (p.a.) (95% confidence interval [CI]: 0.13%-0.26%); Algorithm 2: 0.18% p.a. (95% CI: 0.13%-0.22%); Algorithm 3: 0.17% p.a. (95% CI: 0.13%-0.22%) and Algorithm 4: 0.17% p.a. (95% CI: 0.13%-0.21%). CONCLUSION: We confirmed significant misclassification of recent HIV cases when not including viral load and ARV testing. Context-specific MDRI and FRR resulted in progressively lower incidence estimates but did not fully account for the context-specific variability in incidence modelling. The inclusion of ARV testing, in addition to viral load and ID-NAT testing, did not have a significant impact on incidence estimates.

3.
MethodsX ; 12: 102683, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623305

RESUMO

The banking sector's shift from traditional physical locations to digital channels has offered customers unprecedented convenience and increased the risk of fraud for customers and institutions alike. In this study, we discuss the pressing need for robust fraud detection & prevention systems in the context of evolving technological environments. We introduce a graph-based machine learning model that is specifically designed to detect fraudulent activity in various types of banking operations, such as credit card transactions, debit card transactions, and online banking transactions. This model uses advanced methods for anomalies, behaviors, and patterns to analyze past transactions and user behavior almost immediately. We provide an in-depth methodology for evaluating fraud detection systems based on parameters such as Accuracy Recall rate and False positive rate ROC curves. The findings can be used by financial institutions to develop and enhance fraud detection strategies as they demonstrate the effectiveness and reliability of the proposed approach. This study emphasizes the critical role that innovative technologies play in safeguarding the financial sector from the ever-changing strategies of fraudsters while also enhancing banking security.•This paper aims to implement the detection of fraudulent transactions using a state-of-the-art Graph Database approach.•The relational graph of features in the dataset used is modelled using Neo4J as a graph database.•Applying JSON features from the exported graph to various Machine Learning models, giving effective outcomes.

4.
Phys Eng Sci Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625624

RESUMO

In this study, we compared the repeatability and reproducibility of radiomic features obtained from positron emission tomography (PET) images according to the reconstruction algorithm used-advanced reconstruction algorithms, such as HYPER iterative (IT), HYPER deep learning reconstruction (DLR), and HYPER deep progressive reconstruction (DPR), or traditional Ordered Subset Expectation Maximization (OSEM)-to understand the potential variations and implications of using advanced reconstruction techniques in PET-based radiomics. We used a heterogeneous phantom with acrylic spherical beads (4- or 8-mm diameter) filled with 18F. PET images were acquired and reconstructed using OSEM, IT, DLR, and DPR. Original and wavelet radiomic features were calculated using SlicerRadiomics. Radiomic feature repeatability was assessed using the Coefficient of Variance (COV) and intraclass correlation coefficient (ICC), and inter-acquisition time reproducibility was assessed using the concordance correlation coefficient (CCC). For the 4- and 8-mm diameter beads phantom, the proportion of radiomic features with a COV < 10% was equivocal or higher for the advanced reconstruction algorithm than for OSEM. ICC indicated that advanced methods generally outperformed OSEM in repeatability, except for the original features of the 8-mm beads phantom. In the inter-acquisition time reproducibility analysis, the combinations of 3 and 5 min exhibited the highest reproducibility in both phantoms, with IT and DPR showing the highest proportion of radiomic features with CCC > 0.8. Advanced reconstruction methods provided enhanced stability of radiomic features compared with OSEM, suggesting their potential for optimal image reconstruction in PET-based radiomics, offering potential benefits in clinical diagnostics and prognostics.

5.
iScience ; 27(5): 109644, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628964

RESUMO

While artificial intelligence drives remarkable progress in natural sciences, its broader societal implications are mostly disregarded. In this study, we evaluate environmental impacts of deep learning in materials science through extensive benchmarking. In particular, a set of diverse neural networks is trained for a given supervised learning task to assess greenhouse gas (GHG) emissions during training and inference phases. A chronological perspective showed diminishing returns, manifesting themselves as a 28% decrease in mean absolute error and nearly a 15,000% increase in the carbon footprint of model training in 2016-2022. By means of up-to-date graphics processing units, it is possible to partially offset the immense growth of GHG emissions. Nonetheless, the practice of employing energy-efficient hardware is overlooked by the materials informatics community, as follows from a literature analysis in the field. On the basis of our findings, we encourage researchers to report GHG emissions together with standard performance metrics.

6.
Adv Sci (Weinh) ; : e2309781, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610112

RESUMO

Remote sensing technology, which conventionally employs spectrometers to capture hyperspectral images, allowing for the classification and unmixing based on the reflectance spectrum, has been extensively applied in diverse fields, including environmental monitoring, land resource management, and agriculture. However, miniaturization of remote sensing systems remains a challenge due to the complicated and dispersive optical components of spectrometers. Here, m-phase GaTe0.5Se0.5 with wide-spectral photoresponses (250-1064 nm) and stack it with WSe2 are utilizes to construct a two-dimensional van der Waals heterojunction (2D-vdWH), enabling the design of a gate-tunable wide-spectral photodetector. By utilizing the multi-photoresponses under varying gate voltages, high accuracy recognition can be achieved aided by deep learning algorithms without the original hyperspectral reflectance data. The proof-of-concept device, featuring dozens of tunable gate voltages, achieves an average classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%) and far superior to the accuracy of non-tunable photoresponse (71.17%). Artificially designed gate-tunable wide-spectral 2D-vdWHs GaTe0.5Se0.5/WSe2-based photodetector present a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology.

7.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612769

RESUMO

One of the most important challenges in cryogenic electron microscopy (cryo-EM) is the substantial number of samples that exhibit preferred orientations, which leads to an uneven coverage of the projection sphere. As a result, the overall quality of the reconstructed maps can be severely affected, as manifested by the presence of anisotropy in the map resolution. Several methods have been proposed to measure the directional resolution of maps in tandem with experimental protocols to address the problem of preferential orientations in cryo-EM. Following these works, in this manuscript we identified one potential limitation that may affect most of the existing methods and we proposed an alternative approach to evaluate the presence of preferential orientations in cryo-EM reconstructions. In addition, we also showed that some of the most recently proposed cryo-EM map post-processing algorithms can attenuate map anisotropy, thus offering alternative visualization opportunities for cases affected by moderate levels of preferential orientations.


Assuntos
Algoritmos , Anisotropia , Microscopia Crioeletrônica
8.
Expert Opin Drug Saf ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626310

RESUMO

BACKGROUND: Dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors) have acquired a foothold in managing type 2 diabetes mellitus, but few concerns have arisen regarding their overall safety profile. The aim of this study is to assess the potential risk of DPP-4 inhibitors by analyzing data from the FDA Adverse Event Reporting System (FAERS) database. RESEARCH DESIGN AND METHODS: This is a retrospective study which explored the FAERS database till March 2023 for the collection of safety reports. The disproportionality analysis was performed using signal detection algorithms (SDAs) incorporating frequentist-based data mining approach such as relative reporting ratio (RRR), reporting odds ratio (ROR) and proportional reporting ratio (PRR) with 95% confidence interval (CI). RESULTS: A total of 14,573 adverse event reports were reported in the FAERS public dashboard associated with all the included DPP-4 inhibitors. The computed PRR, ROR, and RRR indicated positive signals for DPP-4 inhibitors with cardiac failure, pancreatitis, pemphigoid, hypoglycemia, acute kidney injury and lactic acidosis. Saxagliptin showed a higher signal score for cardiac failure, while sitagliptin was more associated with pancreatitis. Moreover, alogliptin exhibited an elevated signal score associated with pancreatic carcinoma. CONCLUSION: Several significant disproportionality signals were observed with DPP-4 inhibitors. However, clinicians have to consider the comorbidities and concomitant drugs while prescribing these drugs.

9.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610335

RESUMO

Smart buildings use advanced technologies to automate building functions. One important function is occupancy detection using Internet of Things (IoT) sensors for smart buildings. Occupancy information is useful information to reduce energy consumption by automating building functions such as lighting, heating, ventilation, and air conditioning systems. The information is useful to improve indoor air quality by ensuring that ventilation systems are used only when and where they are needed. Additionally, it is useful to enhance building security by detecting unusual or unexpected occupancy levels and triggering appropriate responses, such as alarms or alerts. Occupancy information is useful for many other applications, such as emergency response, plug load energy management, point-of-interest identification, etc. However, the accuracy of occupancy detection is limited by factors such as real-time occupancy data, sensor placement, privacy concerns, and the presence of pets or objects that can interfere with sensor reading. With the rapid development of IoT sensor technologies and the increasing need for smart building solutions, there is a growing interest in occupancy detection techniques. There is a need to provide a comprehensive survey of these technologies. Although there are some exciting survey papers, they all have limited scopes with different focuses. Therefore, this paper provides a comprehensive overview of the current state-of-the-art occupancy detection methods (including both traditional algorithms and machine learning algorithms) and devices with their advantages and limitations. It surveys and compares fundamental technologies (such as sensors, algorithms, etc.) for smart buildings. Furthermore, the survey provides insights and discussions, which can help researchers, practitioners, and stakeholders develop more effective occupancy detection solutions for smart buildings.

10.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610376

RESUMO

The precise placement of antennas is essential to ensure effective coverage, service quality, and network capacity in wireless communications, particularly given the exponential growth of mobile connectivity. The antenna positioning problem (APP) has evolved from theoretical approaches to practical solutions employing advanced algorithms, such as evolutionary algorithms. This study focuses on developing innovative web tools harnessing genetic algorithms to optimize antenna positioning, starting from propagation loss calculations. To achieve this, seven empirical models were reviewed and integrated into an antenna positioning web tool. Results demonstrate that, with minimal configuration and careful model selection, a detailed analysis of antenna positioning in any area is feasible. The tool was developed using Java 17 and TypeScript 5.1.6, utilizing the JMetal framework to apply genetic algorithms, and features a React-based web interface facilitating application integration. For future research, consideration is given to implementing a server capable of analyzing the environment based on specific area selection, thereby enhancing the precision and objectivity of antenna positioning analysis.

11.
J Clin Med ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610732

RESUMO

(1) Background: Neck pain intensity, psychosocial factors, and physical function have been identified as potential predictors of neck disability. Machine learning algorithms have shown promise in classifying patients based on their neck disability status. So, the current study was conducted to identify predictors of neck disability in patients with neck pain based on clinical findings using machine learning algorithms. (2) Methods: Ninety participants with chronic neck pain took part in the study. Demographic characteristics in addition to neck pain intensity, the neck disability index, cervical spine contour, and surface electromyographic characteristics of the axioscapular muscles were measured. Participants were categorised into high disability and low disability groups based on the median value (22.2) of their neck disability index scores. Several regression and classification machine learning models were trained and assessed using a 10-fold cross-validation method; also, MANCOVA was used to compare between the two groups. (3) Results: The multilayer perceptron (MLP) revealed the highest adjusted R2 of 0.768, while linear discriminate analysis showed the highest receiver characteristic operator (ROC) area under the curve of 0.91. Pain intensity was the most important feature in both models with the highest effect size of 0.568 with p < 0.001. (4) Conclusions: The study findings provide valuable insights into pain as the most important predictor of neck disability in patients with cervical pain. Tailoring interventions based on pain can improve patient outcomes and potentially prevent or reduce neck disability.

12.
Diagnostics (Basel) ; 14(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611645

RESUMO

Spectral CT represents a novel imaging approach that can noninvasively visualize, quantify, and characterize many musculoskeletal pathologies. This modality has revolutionized the field of radiology by capturing CT attenuation data across multiple energy levels and offering superior tissue characterization while potentially minimizing radiation exposure compared to traditional enhanced CT scans. Despite MRI being the preferred imaging method for many musculoskeletal conditions, it is not viable for some patients. Moreover, this technique is time-consuming, costly, and has limited availability in many healthcare settings. Thus, spectral CT has a considerable role in improving the diagnosis, characterization, and treatment of gout, inflammatory arthropathies, degenerative disc disease, osteoporosis, occult fractures, malignancies, ligamentous injuries, and other bone-marrow pathologies. This comprehensive review will delve into the diverse capabilities of dual-energy CT, a subset of spectral CT, in addressing these musculoskeletal conditions and explore potential future avenues for its integration into clinical practice.

13.
Int J Pharm ; 656: 124128, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621612

RESUMO

Metal-organic frameworks (MOFs) have shown excellent performance in the field of drug delivery. Despite the synthesis of a vast array of MOFs exceeding 100,000 varieties, certain formulations have exhibited suboptimal performance characteristics. Therefore, there is a pressing need to enhance their efficacy by identifying MOFs with superior drug loading capacities and minimal cytotoxicity, which can be achieved through machine learning (ML). In this study, a stacking regression model was developed to predict drug loading capacity and cytotoxicity of MOFs using datasets compiled from various literature sources. The model exhibited exceptional predictive capabilities, achieving R2 values of 0.907 for drug loading capacity and 0.856 for cytotoxicity. Furthermore, various model interpretation methods including partial dependence plots, individual conditional expectation, Shapley additive explanation, decision tree, random forest, CatBoost Regressor, and light gradient-boosting machine were employed for feature importance analysis. The results revealed that specific metal atoms such as Zn, Cr, Fe, Zr, and Cu significantly influenced the drug loading capacity and cytotoxicity of MOFs. Through model validation encompassing experimental validation and computational verification, the reliability of the model was thoroughly established. In general, it is a good practice to use ML methods for predicting drug loading capacity and cytotoxicity analysis of MOFs, guiding the development of future property prediction methods for MOFs.

14.
Heliyon ; 10(7): e28446, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571624

RESUMO

Background: We aim to investigate genes associated with myasthenia gravis (MG), specifically those potentially implicated in the pathogenesis of dilated cardiomyopathy (DCM). Additionally, we seek to identify potential biomarkers for diagnosing myasthenia gravis co-occurring with DCM. Methods: We obtained two expression profiling datasets related to DCM and MG from the Gene Expression Omnibus (GEO). Subsequently, we conducted differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) on these datasets. The genes exhibiting differential expression common to both DCM and MG were employed for protein-protein interaction (PPI), Gene Ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Additionally, machine learning techniques were employed to identify potential biomarkers and develop a diagnostic nomogram for predicting MG-associated DCM. Subsequently, the machine learning results underwent validation using an external dataset. Finally, gene set enrichment analysis (GSEA) and machine algorithm analysis were conducted on pivotal model genes to further elucidate their potential mechanisms in MG-associated DCM. Results: In our analysis of both DCM and MG datasets, we identified 2641 critical module genes and 11 differentially expressed genes shared between the two conditions. Enrichment analysis disclosed that these 11 genes primarily pertain to inflammation and immune regulation. Connectivity map (CMAP) analysis pinpointed SB-216763 as a potential drug for DCM treatment. The results from machine learning indicated the substantial diagnostic value of midline 1 interacting protein1 (MID1IP1) and PI3K-interacting protein 1 (PIK3IP1) in MG-associated DCM. These two hub genes were chosen as candidate biomarkers and employed to formulate a diagnostic nomogram with optimal diagnostic performance through machine learning. Simultaneously, single-gene GSEA results and immune cell infiltration analysis unveiled immune dysregulation in both DCM and MG, with MID1IP1 and PIK3IP1 showing significant associations with invasive immune cells. Conclusion: We have elucidated the inflammatory and immune pathways associated with MG-related DCM and formulated a diagnostic nomogram for DCM utilizing MID1IP1/PIK3IP1. This contribution offers novel insights for prospective diagnostic approaches and therapeutic interventions in the context of MG coexisting with DCM.

15.
Heliyon ; 10(7): e28415, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560114

RESUMO

In light of recent cryptocurrency value fluctuations, Bitcoin is gradually gaining recognition as an investment vehicle. Given the market's inherent volatility, accurate forecasting becomes crucial for making informed investment decisions. Notably, previous research has utilized machine learning methods to enhance the accuracy of Bitcoin price predictions. However, few studies have explored the potential of employing diverse modeling methods for sampling with varying data formats and dimensional characteristics. This study aims to identify the internal feature subset that yields the highest returns in forecasting Bitcoin's price. Specifically, Bitcoin's internal features were categorized into four groups: currency data, block details, mining information, and network difficulty. Subsequently, a long short-term memory (LSTM) artificial neural network was employed to predict the next day's Bitcoin closing price, utilizing various categorizations of feature subsets. The model underwent training using two and a half years of historical data for each feature. The findings revealed a mean absolute error rate of 6.38% when modeling with the block details category features. This enhanced performance primarily stemmed from the positive relationship between Bitcoin price and this data subset's low ambiguity. Experimental results underscored that, compared to other investigated feature subsets, the categorization of block detail features provided the most accurate Bitcoin price predictions, laying the foundation for future research in this domain.

16.
J Math Biol ; 88(5): 58, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584237

RESUMO

It was recently shown that a large class of phylogenetic networks, the 'labellable' networks, is in bijection with the set of 'expanding' covers of finite sets. In this paper, we show how several prominent classes of phylogenetic networks can be characterised purely in terms of properties of their associated covers. These classes include the tree-based, tree-child, orchard, tree-sibling, and normal networks. In the opposite direction, we give an example of how a restriction on the set of expanding covers can define a new class of networks, which we call 'spinal' phylogenetic networks.


Assuntos
Algoritmos , Modelos Genéticos , Humanos , Filogenia
17.
JMIR Form Res ; 8: e54109, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587885

RESUMO

BACKGROUND: The escalating prevalence of cesarean delivery globally poses significant health impacts on mothers and newborns. Despite this trend, the underlying reasons for increased cesarean delivery rates, which have risen to 36.3% in Portugal as of 2020, remain unclear. This study delves into these issues within the Portuguese health care context, where national efforts are underway to reduce cesarean delivery occurrences. OBJECTIVE: This paper aims to introduce a machine learning, algorithm-based support system designed to assist clinical teams in identifying potentially unnecessary cesarean deliveries. Key objectives include developing clinical decision support systems for cesarean deliveries using interoperability standards, identifying predictive factors influencing delivery type, assessing the economic impact of implementing this tool, and comparing system outputs with clinicians' decisions. METHODS: This study used retrospective data collected from 9 public Portuguese hospitals, encompassing maternal and fetal data and delivery methods from 2019 to 2020. We used various machine learning algorithms for model development, with light gradient-boosting machine (LightGBM) selected for deployment due to its efficiency. The model's performance was compared with clinician assessments through questionnaires. Additionally, an economic simulation was conducted to evaluate the financial impact on Portuguese public hospitals. RESULTS: The deployed model, based on LightGBM, achieved an area under the receiver operating characteristic curve of 88%. In the trial deployment phase at a single hospital, 3.8% (123/3231) of cases triggered alarms for potentially unnecessary cesarean deliveries. Financial simulation results indicated potential benefits for 30% (15/48) of Portuguese public hospitals with the implementation of our tool. However, this study acknowledges biases in the model, such as combining different vaginal delivery types and focusing on potentially unwarranted cesarean deliveries. CONCLUSIONS: This study presents a promising system capable of identifying potentially incorrect cesarean delivery decisions, with potentially positive implications for medical practice and health care economics. However, it also highlights the challenges and considerations necessary for real-world application, including further evaluation of clinical decision-making impacts and understanding the diverse reasons behind delivery type choices. This study underscores the need for careful implementation and further robust analysis to realize the full potential and real-world applicability of such clinical support systems.

18.
JDR Clin Trans Res ; : 23800844241232318, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589339

RESUMO

INTRODUCTION: Periodontitis is the main cause of tooth loss and is related to many systemic diseases. Artificial intelligence (AI) in periodontics has the potential to improve the accuracy of risk assessment and provide personalized treatment planning for patients with periodontitis. This systematic review aims to examine the actual evidence on the accuracy of various AI models in predicting periodontitis. METHODS: Using a mix of MeSH keywords and free text words pooled by Boolean operators ('AND', 'OR'), a search strategy without a time frame setting was conducted on the following databases: Web of Science, ProQuest, PubMed, Scopus, and IEEE Explore. The QUADAS-2 risk of bias assessment was then performed. RESULTS: From a total of 961 identified records screened, 8 articles were included for qualitative analysis: 4 studies showed an overall low risk of bias, 2 studies an unclear risk, and the remaining 2 studies a high risk. The most employed algorithms for periodontitis prediction were artificial neural networks, followed by support vector machines, decision trees, logistic regression, and random forest. The models showed good predictive performance for periodontitis according to different evaluation metrics, but the presented methods were heterogeneous. CONCLUSIONS: AI algorithms may improve in the future the accuracy and reliability of periodontitis prediction. However, to date, most of the studies had a retrospective design and did not consider the most modern deep learning networks. Although the available evidence is limited by a lack of standardized data collection and protocols, the potential benefits of using AI in periodontics are significant and warrant further research and development in this area. KNOWLEDGE TRANSFER STATEMENT: The use of AI in periodontics can lead to more accurate diagnosis and treatment planning, as well as improved patient education and engagement. Despite the current challenges and limitations of the available evidence, particularly the lack of standardized data collection and analysis protocols, the potential benefits of using AI in periodontics are significant and warrant further research and development in this area.

19.
BMC Oral Health ; 24(1): 430, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589865

RESUMO

BACKGROUND: The aim of this study was to analyse the risk factors that affect oral health in adults and to evaluate the success of different machine learning algorithms in predicting these risk factors. METHODS: This study included 2000 patients aged 18 years and older who were admitted to the Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Gaziantep University, between September and December 2023. In this study, patients completed a 30-item questionnaire designed to assess the factors that affect the decayed, missing, and filled teeth (DMFT). Clinical and radiological examinations were performed, and DMFT scores were calculated after completion of the questionnaire. The obtained data were randomly divided into a 75% training group and a 25% test group. The preprocessed dataset was analysed using various machine learning algorithms, including naive Bayes, logistic regression, support vector machine, decision tree, random forest and Multilayer Perceptron algorithms. Pearson's correlation test was also conducted to assess the correlation between participants' DMFT scores and oral health risk factors. The performance of each algorithm was evaluated to determine the most appropriate algorithm, and model performance was assessed using accuracy, precision, recall and F1 score on the test dataset. RESULTS: A statistically significant difference was found between various factors and DMFT-based risk groups (p < 0.05), including age, sex, body mass index, tooth brushing frequency, socioeconomic status, employment status, education level, marital status, hypertension, diabetes status, renal disease status, consumption of sugary snacks, dry mouth status and screen time. When considering machine learning algorithms for risk group assessments, the Multilayer Perceptron model demonstrated the highest level of success, achieving an accuracy of 95.8%, an F1-score of 96%, and precision and recall rates of 96%. CONCLUSIONS: Caries risk assessment using a simple questionnaire can identify individuals at risk of dental caries, determine the key risk factors, provide information to help reduce the risk of dental caries over time and ensure follow-up. In addition, it is extremely important to apply effective preventive treatments and to prevent the general health problems that are caused by the deterioration of oral health. The results of this study show the potential of machine learning algorithms for predicting caries risk groups, and these algorithms are promising for future studies.


Assuntos
Cárie Dentária , Saúde Bucal , Adulto , Humanos , Cárie Dentária/epidemiologia , Cárie Dentária/etiologia , Cárie Dentária/prevenção & controle , Teorema de Bayes , Suscetibilidade à Cárie Dentária , Índice CPO , Fatores de Risco
20.
JMIR Ment Health ; 11: e55988, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593424

RESUMO

BACKGROUND: Large language models (LLMs) hold potential for mental health applications. However, their opaque alignment processes may embed biases that shape problematic perspectives. Evaluating the values embedded within LLMs that guide their decision-making have ethical importance. Schwartz's theory of basic values (STBV) provides a framework for quantifying cultural value orientations and has shown utility for examining values in mental health contexts, including cultural, diagnostic, and therapist-client dynamics. OBJECTIVE: This study aimed to (1) evaluate whether the STBV can measure value-like constructs within leading LLMs and (2) determine whether LLMs exhibit distinct value-like patterns from humans and each other. METHODS: In total, 4 LLMs (Bard, Claude 2, Generative Pretrained Transformer [GPT]-3.5, GPT-4) were anthropomorphized and instructed to complete the Portrait Values Questionnaire-Revised (PVQ-RR) to assess value-like constructs. Their responses over 10 trials were analyzed for reliability and validity. To benchmark the LLMs' value profiles, their results were compared to published data from a diverse sample of 53,472 individuals across 49 nations who had completed the PVQ-RR. This allowed us to assess whether the LLMs diverged from established human value patterns across cultural groups. Value profiles were also compared between models via statistical tests. RESULTS: The PVQ-RR showed good reliability and validity for quantifying value-like infrastructure within the LLMs. However, substantial divergence emerged between the LLMs' value profiles and population data. The models lacked consensus and exhibited distinct motivational biases, reflecting opaque alignment processes. For example, all models prioritized universalism and self-direction, while de-emphasizing achievement, power, and security relative to humans. Successful discriminant analysis differentiated the 4 LLMs' distinct value profiles. Further examination found the biased value profiles strongly predicted the LLMs' responses when presented with mental health dilemmas requiring choosing between opposing values. This provided further validation for the models embedding distinct motivational value-like constructs that shape their decision-making. CONCLUSIONS: This study leveraged the STBV to map the motivational value-like infrastructure underpinning leading LLMs. Although the study demonstrated the STBV can effectively characterize value-like infrastructure within LLMs, substantial divergence from human values raises ethical concerns about aligning these models with mental health applications. The biases toward certain cultural value sets pose risks if integrated without proper safeguards. For example, prioritizing universalism could promote unconditional acceptance even when clinically unwise. Furthermore, the differences between the LLMs underscore the need to standardize alignment processes to capture true cultural diversity. Thus, any responsible integration of LLMs into mental health care must account for their embedded biases and motivation mismatches to ensure equitable delivery across diverse populations. Achieving this will require transparency and refinement of alignment techniques to instill comprehensive human values.


Assuntos
Pessoal Técnico de Saúde , Saúde Mental , Humanos , Estudos Transversais , Reprodutibilidade dos Testes , Idioma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...